Contoh Soal dan Pembahasan
Jawaban :
Cos 2 A = 1 -2 sin² A => 1 – 2 sin² A = cos 2 A
1 – 2 sin² 67,5 = cos 2 (67,5°)
= cos 135°
= - cos 45°
= - ½ √2
2. Sederhanakan bentuk trigonometri (1 + cot2 β) / (cot β . sec2 β).
Pembahasan
Dari pecahan (1 + cot2 β) / (cot β . sec2 β), sederhanakan masing-masing penyebut dan pembilangnya.
1 + cot2 β = cosec2 β
⇒ 1 + cot2 β = 1/sin2 β
cot β . sec2 β = (cos β/ sinβ) . sec2 β
⇒ cot β . sec2 β = (cos β/ sin β).(1/cos2 β)
⇒ cot β . sec2 β = cos β / sin β.cos2 β
Setelah digabung kembali diperoleh :
(1 + cot2 β) / (cot β . sec2 β) = (1/sin2 β) / (cos β / sinβ.cos2 β)
⇒ (1 + cot2 β) / (cot β . sec2 β) = (1/sin2 β) . (sin β.cos2 β / cos β)
⇒ (1 + cot2 β) / (cot β . sec2 β) = sin β.cos2 β / sin2 β.cos β
⇒ (1 + cot2 β) / (cot β . sec2 β) = cos β / sin β
⇒ (1 + cot2 β) / (cot β . sec2 β) = cot β
Jadi, (1 + cot2 β) / (cot β . sec2 β) = cot β.
A. 1/2
B. 1/2 √2
C. 1/2 √3
D. 1/3
E. 1/3 √2
Pembahsan
Hitung terpenting dahulu sin x
cos 2x = 1 - 2 sin2 x
2 sin2 x = 1 - cos 2x = 1 - 1/2 = 1/2
sin2 x = 1/4
sin x = 1/2
sin x = depan / miring = 1/2
tan x = samping / miring
samping = √(22 - 12) = √3
Makara tan x = √3/2 = 1/2 √3
Jawaban: C
Terimakasih
Tidak ada komentar:
Posting Komentar